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to E values of about 1.4 contributes only limited con- 
figurational information. Expansion to E values of 1.0 
adds no new information and, due to the squaring effect, 
may even destroy valuable phase information. The 
use of the different phase expansion procedure, 'phase 
correction', eliminates the squaring tendency and 
allows phase expansion to E values of 1.0. Compared 
with the tangent formula the phases are more accurate 
resulting in a narrow range of atomic peak heights, 
few or no interspersed spurious peaks, elimination 
of wrong peaks, enhancement of unknown atoms and 
reduction of background. Phase sets treated with the 
tangent formula which do not converge to an inter- 
pretable or partially recognizable structure may be 
improved by phase correction to show the complete 
structure. 
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Classification of Magnetic Structures in Some Orthorhombic Space Groups 
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(Received 19 April 1971) 

The magnetic structures belonging to magnetic space groups isomorphic with D~2h, i= 1,2 . . . .  16, are 
classified for the general and special positions of these space groups. 

Introduction 

Given a crystal with ionic magnetic moments Sl, 
S2, . . . ,Sn on a set of n-fold positions, the 3n dimen- 
sional space 

S = S I × S z ×  . . . S ,  (1) 

has subspaces invariant under the paramagnetic 
symmetry group of the crystal. The bases of all these 
subspaces, known as modes* (Bertaut, 1968), may serve 
to classify the possible magnetic structures in the crys- 
tal. A classification of this sort for special positions in 
D~ 6 is given in the literature (Bertaut, 1968). We pre- 

* In analogy with normal modes of the theory of vibrations. 

sent an extension of the classification to 2-, 4- and 
8-fold positions in D~h, i=  1 , 2 , . . . ,  16, as a part of an 
idea to extend the classification to all space groups. 
Tables of limiting conditions for allowed reflexions in 
these space groups are given elswhere (Gurewitz & 
Shaked, 1971). An example of the use of the classifica- 
tion scheme and the tables of allowed reflexions in the 
analysis of neutron diffraction from a polycrystalline 
sample of KFeC13, is given in the present paper. 

Classification of the magnetic structures in crystals 
belonging to D~h, i=1,2,... 16 

The point group of the space groups D~2h is mmm. This 
is a commutative group of order 8. It has: (a) seven 
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subgroups  of  o rder  4, three o f  type m m ,  one of  type 
222, and  three  o f  type 2 / m  (b) seven subgroups  of  
o rder  2, three  of  type m, one  o f  type 1, and  three o f  
type 2. The  mul t ip l ic i ty  of  a pos i t ion  wi th  a cer ta in  
po in t  symmet ry  equals  the index o f  this po in t  g roup  
wi th  respect  to m m m .  Hence,  the 2- or  4-fold special  
pos i t ions  in D~a have the po in t  symmet ry  o f  one o f  the 
subgroups  (a) or  (b) respectively. 

The  i r reducible  represen ta t ions  o f  m m m  are real  
and  one-d imens iona l .  I t  is there fore  possible  to de- 
compose  the space S [equat ion  (I)] into 3n one-d imen-  
s ional  subspaces,  i nva r i an t  wi th  respect to  D~zh . Since 
an  o r t h o r h o m b i c  axis, c~=x,y,z ,  t r ans fo rms  in to  + 
unde r  m m m  we could  choose  V~ as bases to the in- 
va r i an t  subspaces o f  S, namely"  

2~Sj~ (2) V ~ - -  

j = l  

where  c~ = x ,y ,  z a n d  u = 1 , 2 , . . . ,  n. 
The  i r reducible  r ep resen ta t ion  o f  any  e lement  o f  

m m m  is e i ther  + 1 or  - 1 and  it  fol lows* t ha t  

11 ~ j ~ - + l  - 1 .  (3) 

We may  choose  2 ~ , = 2 t =  + 1  for  every u and  c~. In  
o rder  to de te rmine  the values o f  the rest o f  the 2~,, we 
util ize the  fo l lowing  p rope r ty :  for  every symmet ry  
e lement  in D~zh, we can rewri te  equa t ion  (2) in pairs,  
2~',&~+2~,,&,, so tha t  the  magne t ic  m o m e n t  in the  
pos i t ion  l t r ans fo rms  to a magne t i c  m o m e n t  in the 
pos i t ion  k, and  vice versa, unde r  the t r a n s f o r m a t i o n  o f  
this  symmet ry  element .  A necessary and  sufficient 
cond i t i on  t ha t  V~ be inva r i an t  unde r  this symmet ry  
e lement  is t ha t  the p roduc t s  2~2~  are the same for  all  
pairs  in equa t i on  (2) o f  every symmet ry  element .  This  
cond i t i on  is i ndependen t  o f  c~ and  it  is therefore  con-  
ven ien t  to l o o k  for  the 'vec tor  s o l u t i o n s "  

* The sum [equation (2)] can be obtained by operating with 
the projection operator on the vector Sle. 2~e is the representa- 
tion of the symmetry element which transforms the position 1 
t ° the position j. 

v"= 2: (4) 

Every one o f  the three  c o m p o n e n t s  of  V" is an  inva r i an t  
subspace.  Cons ide r  the fac tor  g roup  o f  m m m  relat ive 
to the g roup  of  the po in t  symmet ry  o f  an  n-fold posi- 
t ion.  A genera tor ,  Aq, o f  this fac tor  g roup  t r ans fo rms  
S~ to S~; hence,  it  forms the p roduc t  212~=2~, which  
can take  ei ther  + 1 or  - 1 .  I f  we have  w generators ,  
there  are 2 TM solut ions,  which  is jus t  the index of  the  
g roup  o f  po in t  symmet ry  relat ive to m m m .  Hence,  
there  are n 'vec tor  so lu t ions '  [equat ion (4)] a n d  3n 
scalar  so lu t ions  [equat ion  (2)] as requi red  to span  the 
space S [equat ion  (1)]. One 'vector  so lu t ion '  is all  

Table  1. Def in i t ion  o f  the two fo ld  pos i t ion  labels 
wi th  respect  to the s y m m e t r y  e l emen t  

Point 
symmetry 

2~/m~ 

222 

m'mB 

Symmetry elements transforming 
position no. 1 to position no.: 

1 2 

E T m" m B 
m~ 2~ 2" 2~ 

E 2" T m~ 
2# 2~ mp mv 

E 2~ T m~ 
m~ mp 2~ 2p 

Table  2. Def in i t ion  o f  the f o u r f o l d  pos i t ion  labels 
with respect  to the s y m m e t r y  e l emen t s  

Point 
symmetry 

m~ 
2" 
T 

Symmetry elements transforming 
position no. 1 to position no.: 

1 2 3 4 

E m" i 2" 2,8 m~ 2~ mfl 
E 2" T m" m B m~ 2~ 2,8 
E T mv 2u mx 2x m~ 2z 

Table  3. Defini t ion o f  the genera l  pos i t ion  labels 
with respect  to the s y m m e t r y  e l emen t s  

Symmetry elements transforming 
position no. 1 to position no.: 

1 2 3 4 5 6 7 8 

E 2y 2z 2z T my mz m~ 

Table  4. M a g n e t i c  groups  and  corresponding magne t i c  s t ruc tures  in the two-,  f o u r -  and  e ight- fo ld  pos i t ions  in D ~ ,  
i =  1 , 2 , . . . ,  16 (Gurewi t z  & S h a k e d ,  1971) 

(1) Two fold 
^ 

(2) 2~/m~, 2,, 2B 2~, rn'm# 
(4) (3) ~ fl Y c~ fl y . fl 
m" mfl m~ - - A . . . . .  
m~ m o m T - - F - - F - - 
m~ m#, m 7 A F - - F - - F 
m,~ m,o m? F A - F - - F - 
m" m o m? . . . . . . . .  
m" mB, m~ . . . . .  A - - 
rn" m a m~ . . . .  A - A - 
m~ m B m~ - - - A - - - A 

Eight fold Four fold 

m" 2" T 1 

- C - - C - - G C A G + C + A + 
F - C F - C F C G F C ÷ G + F + 
- - F C - F C A F G A ÷ F + G + 
- F - - F - - F A C F + A + C + 
A - G A G . . . . .  G - C - A -  
- G - - - G A - - - C - G - F -  
- A - - - A G - - - A - F - G -  
- - A G A . . . . .  F - A - C -  

(1) Multiplicity 
(2) Point symmetry 
(3) Magnetic axis parallel to: 
(4) Magnetic group 
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25 = + 1 (ferromagnetic). In the other n -  1 solutions, 
half of  the 2's are + 1 and half are - 1  (antiferro- 
magnetic). The 'vector solution', V", is sometimes 
called magnetic configuration (Shirane, 1959), the 
name we use in the rest of  the paper. 

We now write down* the magnetic configurations for 
the n = 2 - ,  4- and 8-fold positions in D~h, i =  

* We use the symbols F, C, G,A (Bertaut, 1968) rather than 
V u . 
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SCATTERING ANGLE,2e,deg. 
Fig. 1. Neutron (A,,, 1.02 A) diffraction patterns of powder sample of KFeCI3 at (a) 4.2°K and (b) 300°K. 
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1 , 2 , . . . ,  16. The correspondence between the position 
q and the symmetry element that transforms position 1 
into position q is given in Tables 1, 2 and 3. Position 1 
is any of  the n positions. 
A. The two ( n = 2 )  fold positions al low one ferro- 
magnetic and one antiferromagnetic configuration: 

F = $ 1 + $ 2  
A = S l -  S2.  (5) 

Table 5. Limiting conditions on possible reflexions 
Special pos tions m, in Dtz~, i =  1,2 . . . .  16 (Gurewitz & Shaked, 

1971). 

s,̂ cE ~ e 

GROUP t~ o 
u 

L I M I T I N G  C O N D I T I O N S  

hkt P C A G 

Plm~m m x 00r, ] No Cond. - No Cond. 
hOE 

0k0 } No Cond. 
hk0 
h00 NO Cond. - - 

NO Cond. 

00g ] No Cond. 
0kt 
0k0 No Cond. 

hO0 } NO Cond. 
hkO 

No Cond. 

NO Cond. 

yez 00~ 
0k0 } 
0k~ 
h00 ) 
h01 

No COndo 

NO Cond. 

NO Cond. 

- 

No Cond. 

NO Cond. 

Pccm m z 00g £m2n tm2n+l - - 
0k0 NO Cond. - No Cond. 
0kg t~2n £ffi2n÷l tffi2n tm2n+l 
h00 No Cond. - - No Cond. 
hot gm2n tm2n+l £-2n+I t=2n 

P~na my i,J 
001 } No Cond. - - No Cond. 
0kl 
0k0 No Cond - - - 
h00 
hk0 } h=2n hffi2n÷l h-2n h-2n+l 

m X 00t } No Cond. - No Cond. - 
h01 
0k0 No Cond. - - NO Cond. 
hk0 h-2n hffi2n+l hf2n+l h-2n 
h00 hm2n - hffi2n+l - 

Pmna m x 001 
OkO 
hO0 
h01  
hkO 

Im2n 
NO Cond. 

hf2n 
h+tm2n 

hm2n 

t-2n+Z t-2n t=2n+l 
- - No Cond. 

h-2n+l - 
h÷g-2n÷l h+~=2n h+t-2n+l 

h=2n+l h-2n+l h-2n 

Pbam m z g,h 001 NO Cond. - 

0k0 } km2n k-2n+l k-2n k-2n+l 
0kt 

h00 } hffi2n h-2n+l h-2n+l h=2n 
h01 

Pbcm m z 001 
oko } 
0kL 
h00 
h01 

t-2n 

kf2n 

No Cond. 
I~2n 

- gffi2n+l - 

k=2n+l kf2n k-2n+l 

- - No Cond. 
I-2~+i 1-2n+i g-2n 

Pnnm m z 001 
OkO 
Okt. 
hO0 
h01 

t-2n 
kf2n 

k+g=2n 
hm2n 

h+tffi2n 

1=2n÷i - - 
kf2n+l k-2n k=2n+1 

k+tffi2n+l k+1ffi2n k+1-2n+l 
hf2n+l h=2n÷l h=2n 

h+tf2n+l h+g=2n+l h+g-2n 

m x 00t } 
hot 
0k0 
h00 
hk0 

No Cond. 

k=2n 
h=2n 

h+kffi2n 

- No Cond. - 

kffi2n+l k-2n÷l k-2n 
- h-2n+l - 

h+k-2n+l h+kf2n+l h+k-2n 

001 } No Condo - No Cond. 
0kt 
0k0 k=2n - - k-2n+l 
h00 h-2n h-2n+l h-2n hf2n+l 
hk0 h+k-2n h+kf2n+l h+k-2n h+k-2n+l 

Pnma my 00 I, 1-2n g-2n+l I-2n+I I-2n 
0k0 kf2n - h=2n - 

la00 } h-2n h=2n+l h-2n hffi2n÷l 
hk0 
0kg k+l-2n k+g-2n+l k+£-2n+l k÷t-2n 

B. The four ( n = 4 )  fold positions allow one ferro- 
magnetic and three antiferromagnetic configurations: 

F = S~ + $2 + $3 + $4 
G = S~ - Sz + S3 - 5 4  

A = $1 - $ 2 -  $3 + $4 
C = S  1-t-S 2 - 8 3 - 5 4  . 

(6) 

C. The eight ( n = 8 )  fold positions allow one ferro- 
magnetic and seven antiferromagnetic configurations: 

F + = Sl  "-If" S 2 "3i- S 3 -t- S 4 -Jv S 5 -Jl- S 6 -3i- S 7 -3i- S a 

G + = Sl  - $2 + Sa - S4 + $5 - 5 6  .qt_ $ 7  _ 5 8  

A + = Sl  - $ 2 -  Sa + S4 + Ss - S 6  - S 7 "-[- 8 8  

C + = S 1-1- S 2 - S 3 - S 4 --1- S 5 .qL 56 _ S7 _ S8 

F -  = S~ + $2 + $3 + $ 4 -  S5 - S 6 -  $ 7 -  Ss 
G -  = S1 - $2 + Sa - S4 - S5 + 5 6  - S 7 -31- S 8 

A -  = $1 - $2 - $3 + S 4  - -  5 5  -Ji- S 6 --1- S 7 - S 8 

C - = S 1 --I- S 2 - S 3 - S 4 - S 5 - S 6 --1- S 7 -]- S s . 

(7) 

As already mentioned, the components o f  a configura- 
tion (say Gx, Gy, and Gz of  G) represent three possible 
magnetic modes. The magnetic symmetries o f  the 
magnetic modes are summarized in Table 4. For ex- 
ample, consider a crystal o f  the space group Pbcn (D~z 4) 
having magnetic ions at the 4(c) positions, the point 
symmetry of  which is 2y (International Tables for X-ray 
Crystallography, 1969). In using Table 4, we therefore 
set a --~ y, fl -+  z, 7 -+  x, and it follows that the mode 
Cy belongs to Pbcn, the modes Cz and Fx belong to 
Pbc'n', and so on. 

Example 

The compound KFeCla is orthorhombic with Pnma as 
a space group at room temperature (Gurewitz, Makov- 
sky &~Shaked, 1972). The magnetic Fe 2÷ ions are 
located at the 4(c) positions (point symmetry: mr). 
This compound undergoes a para to antiferromagnetic 
transition at about 15 °K. Neutron diffraction patterns 
of  a polycrystalline sample at 4.2 and 300 °K are shown 
in Fig. 1. Magnetic contributions [Fig. l(a)] to the re- 
flexions: {001}, {100}, {101}, {102}, {003}, {201}, 
{110}, {300} and {310} are observed. According to 
Table 5, the reflexions {00l} with l = 2 n +  1 and {h00} 
with h = 2n + 1 are allowed only in the C configuration. 
Furthermore, these reflexions exclude (because of  q2) 
structures with Mllz or Ml[x. We can, therefore, con- 
clude that the only axial structure consistent with the 
neutron data (Fig. 1) is C with MIIy, or Cy.* In order 
to determine the magnetic space group, we note that 
the point symmetry is my; therefore we set in Table 4 

* It still remains to be shown that the integrated intensities 
calculated for Cu are in agreement with the observed ones. 
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the correspondence my ~ m,, namely c~ +-+ y. Hence, 
Cy appears in the first line (under m,), and the magnetic 
group according to which Cy (C,) transforms is (Table 4) 
enma (m~mt~mv). 
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Properties of Crystal Lattices: The Derivative Lattices and their Determination 
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Derivative lattices are classified as super, sub and composite, on the basis of the properties of the trans- 
formation matrices relating them to the lattice from which they are derived. A method for obtaining 
the transformation matrices generating these lattices is given. The method has been applied to the deriv- 
ation of the unique super and sublattices in a few important cases. 

The super and sublattices associated with the lattice of 
a crystal are not infrequently related to important 
properties of the crystal. For example, in the case of 
twinning by reticular merohedry, twinning takes place 
only if a superlattice possesses symmetry (or pseudo- 
symmetry) higher than that of the crystal lattice 
(Friedel, 1964; Donnay, Donnay & Kullerud, 1958). 
The concepts of super and sublattices are also essential 
in the study of some derivative structures (Buerger, 
1946, 1954). In an order--disorder transformation, for 
example, the ordered phase is characterized by a cell 
larger than that of the disordered phase and, similarly, 
the cell on which a magnetic structure is based is often 
larger than that of the corresponding chemical struc- 
ture. So far, no attempt has been made to determine 
systematically the number and the geometrical proper- 
ties of super and sublattices associated with a given 
lattice, and the treatment of this subject has been 
generally restricted to specific cases of interest. In this 
paper, we define derivative lattices and then outline a 
method for their derivation. 

Let us consider any given lattice and let us describe 
it in terms of any arbitrary primitive triplet of non- 
coplanar translations at (a triplet is called primitive 
when it defines a primitive cell: International Tables for 
X-ray Crystallography, 1969, p. 8). Let us now perform 
the axial transformation 

b~=~:S~jaj ( i , j= 1,2,3) (1) 

and let us assume that the determinant ISI of the trans- 
formation matrix S is different from zero. The three 
noncoplanar translations bi can be regarded as the 

edges of a primitive cell defining a new lattice related 
to the one based on the translations at by transforma- 
tion (1). We may call original lattice the lattice based 
on the triplet of translations at and derivative lattice 
the lattice defined by the triplet of translations b~, 
provided that this triplet is considered primitive. 
Original and derivative lattices are in general different, 
i.e. they have different reduced cells (Niggli, 1928; 
International Tables for X-ray Crystallography, 1969, 
p. 530). However, if the elements S~j are integers, and 
if the determinant ISl is equal to unity, the two lattices 
are identical. 

The derivative lattices of interest in crystallography 
are those that are obtained when the elements S~j in 
transformation (1) are simple rational numbers. These 
lattices can be defined in terms of the properties of the 
transformation matrix S as follows. 

Definition 1. A derivative lattice is a superlattice,* if 
the elements Sij of matrix S are integers, and if the 
determinant ISI is greater than one. Thus, all the nodes 
of the superlattice are nodes of the original lattice, but 
not all nodes of the original lattice are nodes of the 
superlattice. 

Definition 2. Let T be the inverse of matrix S, i.e. 
T = S  -1. A derivative lattice is a sublattice, if the ele- 
ments Tt: of matrix T are integers, and if the deter- 
minant ITI is greater than one. Thus all the nodes of 

* In some publications, especially in the mathematical 
literature (e.g. Cassels, 1959), a 'superlattice' as defined in this 
paper is called a sublattice because it is generated by a subgroup 
of the translations on which the original lattice is based. 


