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to E values of about 1-4 contributes only limited con-
figurational information. Expansion to E values of 1:0
adds no new information and, due to the squaring effect,
may even destroy valuable phase information. The
use of the different phase expansion procedure, ‘phase
correction’, eliminates the squaring tendency and
allows phase expansion to E values of 1-0. Compared
with the tangent formula the phases are more accurate
resulting in a narrow range of atomic peak heights,
few or no interspersed spurious peaks, elimination
of wrong peaks, enhancement of unknown atoms and
reduction of background. Phase sets treated with the
tangent formula which do not converge to an inter-
pretable or partially recognizable structure may be
improved by phase correction to show the complete
structure.
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Classification of Magnetic Structures in Some Orthorhombic Space Groups

By E. GUREWITZ AND H.SHAKED
Physics Department, Nuclear Research Centre-Negev, P.0.B. 9001, Beer Sheva, Israel

(Received 19 April 1971)

The magnetic structures belonging to magnetic space groups isomorphic with D%, i=1,2, ... 16, are
classified for the general and special positions of these space groups.

Introduction

Given a crystal with ionic magnetic moments S,
S, ...,S, on a set of n-fold positions, the 3n dimen-
sional space

S=S,x8S,x...S, 1)

has subspaces invariant under the paramagnetic
symmetry group of the crystal. The bases of all these
subspaces, known as modes* (Bertaut, 1968), may serve
to classify the possible magnetic structures in the crys-
tal. A classification of this sort for special positions in
Dj; is given in the literature (Bertaut, 1968). We pre-

* In analogy with normal modes of the theory of vibrations.

sent an extension of the classification to 2-, 4- and
8-fold positions in Di,, i=1,2,...,16, as a part of an
idea to extend the classification to all space groups.
Tables of limiting conditions for allowed reflexions in
these space groups are given elswhere (Gurewitz &
Shaked, 1971). An example of the use of the classifica-
tion scheme and the tables of allowed reflexions in the
analysis of neutron diffraction from a polycrystalline
sample of KFeCl;, is given in the present paper.

Classification of the magnetic structures in crystals
belonging to Di,, i=1,2,...16

The point group of the space groups D}, is mmm. This
is a commutative group of order 8. It has: (a) seven
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subgroups of order 4, three of type mm, one of type
222, and three of type 2/m (b) seven subgroups of
order 2, three of type m, one of type 1, and three of
type 2. The multiplicity of a position with a certain
point symmetry equals the index of this point group
with respect to mmm. Hence, the 2- or 4-fold special
positions in D%, have the point symmetry of one of the
subgroups (a) or () respectively.

The irreducible representations of mmm are real
and one-dimensional. It is therefore possible to de-
compose the space S [equation (1)] into 3n one-dimen-
sional subspaces, invariant with respect to Dj,. Since
an orthorhombic axis, a=x,y,z, transforms into +«
under mmm we could choose V¥ as bases to the in-
variant subspaces of S, namely:

n
Vi= z A'gaSja s
Jj=1

where a=x,y,zand u=1,2,...,n.
The irreducible representation of any element of
mmm is either +1 or —1 and it follows* that

Se=+1,—1. 3

We may choose A{,=21,=+1 for every » and «. In
order to determine the values of the rest of the A3, we
utilize the following property: for every symmetry
element in Di,, we can rewrite equation (2) in pairs,
A4S+ AlSke, SO that the magnetic moment in the
position / transforms to a magnetic moment in the
position k, and vice versa, under the transformation of
this symmetry element. A necessary and sufficient
condition that V¥ be invariant under this symmetry
element is that the products A%,A%, are the same for all
pairs in equation (2) of every symmetry element. This

@

condition is independent of « and it is therefore con-

venient to look for the ‘vector solutions’:

* The sum [equation (2)] can be obtained by operating with
the projection operator on the vector Siq. A%, is the representa-
tion of the symmetry element which transforms the position 1
¢° the position j.
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Every one of the three components of V*is an invariant
subspace. Consider the factor group of mmm relative
to the group of the point symmetry of an n-fold posi-
tion. A generator, 4,, of this factor group transforms
S, to S,; hence, it forms the product 1,4;= A3, which
can take either +1 or —1. If we have w generators,
there are 2" solutions, which is just the index of the
group of point symmetry relative to mmm. Hence,
there are n ‘vector solutions’ [equation (4)] and 3n
scalar solutions [equation (2)] as required to span the
space S [equation (1)]. One ‘vector solution’ is all

Vu= Z AgSJ .

Table 1. Definition of the twofold position labels
with respect to the symmetry element

Symmetry elements transforming

Point position no. 1 to position no.:
symmetry 1 2
Zy/my iv g'»' ;’ia gllf
22 w 5 m
M fna fﬂyﬁ lz-a g;y

Table 2. Definition of the fourfold position labels
with respect to the symmetry elements

Symmetry elements transforming

Point position no. 1 to position no.:
symmetry 1 2 3 4
m, E my 1 2, 28 my 2, mg
2, E 2, 1T m¢e mgmy 2y 2
1 E 1 my 2y my 2z m: 2.

Table 3. Definition of the general position labels
with respect to the symmetry elements

Symmetry elements transforming
position no. 1 to position no.:
1 2 3 4 5 6 7 8

E 2y 2z 2, T my mz Mg

Table 4. Magnetic groups and corresponding magnetic structures in the two-, four- and eight-fold positions in Di,,
i=1,2,...,16 (Gurewitz & Shaked, 1971)

) Two fold Four fold Eight fold

Q) 2y/my 2428 2y memp Mgy 2 T 1
1C)) B)a B ¥ a By « By a« B ¥ « By o By a By
m, mp my - - A - - = - - = c - - c - - G C A G+ Ct A+
ma mg my - ~- F - - F - - F - C F - C F C G F Ct G+ F+
mg mg m;, A F - - F - - F - - F C - F C A F G A+ F+ Gt
m, my my F A - F - - F - - F - - F - - F A C F+ A+ C*
mg mp my - - - - - - - - A - G A G - - - - - G- C A
my mp m, - - = - - A - - = G - - - G A - - - C- G F-
m, mg my - - = - A - A - - A - - - A G - - - A- F- G-
me mp my - - - A - - - A - - A G A - - - - F- A- C

(1) Multiplicity

(2) Point symmetry

(3) Magnetic axis parallel to:
(4) Magnetic group
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j=+1 (ferromagnetic). In the other n—1 solutions,

half of the A’s are +1 and half are —1 (antiferro-
magnetic). The ‘vector solution’, V¥ is sometimes
called magnetic configuration (Shirane, 1959), the
name we use in the rest of the paper.

CLASSIFICATION OF MAGNETIC STRUCTURES

We now write down* the magnetic configurations for
the n=2-, 4- and 8-fold positions in D, i=

* We use the symbols F,C, G, A (Bertaut, 1968) rather than
V¥,

23 88523 e
_ | ] Nl N
3 S 28 ¢ 8 833 SHE- 33" 22gtggnigrescess
l Y T A R T RN T el VAR
3 %
4 o I
3_
2_
21
=
D
o
< ] i L 1 1 1 1 1 1 ! 1 1 1 1 | 1 ! 1 | S| ! 1 1 I ]
o
= - o9 o
~N — o
g | !
> g8 o 885 588 -38-223088s 182 88-8sx
& | PY Y TN SSENSS SRS
Z ~
e M =
= T
1 1 1 1. 1 1 1 1 | 1 1 1 1 I 1 1 1 1 1 1 1 1 ] 1 1
3 4 5 6 7 8 9 10 11 12 13 1 15 16 17 18 19 20 21 22 23 24 25 26 27

SCATTERING ANGLE,26,deq.
Fig. 1. Neutron (A~ 1-02 A) diffraction patterns of powder sample of KFeCl; at (a) 4-2°K and (b) 300°K.
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1,2,...,16. The correspondence between the position
q and the symmetry element that transforms position 1
into position ¢ is given in Tables 1, 2 and 3. Position 1
is any of the » positions.

A. The two (n=2) fold positions allow one ferro-
magnetic and one antiferromagnetic configuration:

F =SI+SZ
A=S,-S,. (5)

Table 5. Limiting conditions on possible reflexions
Special pos tions m, in Dy, i=1,2, ... 16 (Gurewitz & Shaked,
1971).

]
SPACEE E LIMITING CONDITIONS
o
w
GROUP E. :6:
v hke F c A G
. 2
8 s
Pmom  m, u.v gg: } No Cond. - No Cond. -
Pl:g } No Cond. - - No Cond.
hoo No Cond. - - -
Ry Wox g:: } No Cond. - - No Cond.
0k0 No Cond. - - -
::g } No Cond. - No Cond. -
m, Ye2 oot No Cond. - - -
%0} No cond
3] o Cond. - No Cond. -
:“gg }  No Cond. - - No cond
Pcem L q 00L L=2n 4=2n+1 - -
0k0 No Cond - No Cond. -
(3] 1=2n Le=2n+l 2=2n L=2n+l
hoo No Cond - - No Cond,
hot 1=2n 2s2n+1 =2n+l 2=2n
P2 m, 1] g:: ) No Cond. - - No Cond,
0k0 No Cond - - -
oo} h=2n he2n+l h=2n he2n+1
P k gg: } No Cond. - No Cond. -
0k0 No Cond. - - No Cond.
hk0 h=2n h=2n+l h=2n+1 h=2n
hoo h=2n - h=2n+l -
Pmna mx h 002 i=2n L=2n+l 2=2n 2=2n+1
0k0 No Cond - - No Cond.
hoo h=2n h=2n+1 - -
hot h+i=2n h+4=2n+1 h+2=2n h+&=2n+1
hko h=2n h=2n+1 h=2n+1 h=2n
Pbam n: g.h 00 No Cond. - - -
B} k=2n k=2n+1 k=2n Kkm2n+1
hooy he2n he2n+l he2n+l he2n
Pbcm n, d 0oL 4=2n - 2=2n+l -
i k=2n Kk=2n+l k=2n Kk=2n+1
hoo No Cond. - - No Cond.
hot 4=2n L=2n+) L=2n+1 4=2n
Pnnm L g 0oL L=2n 4=2n+1 - -
0k0 k=2n k=2n+1 k=2n k=2n+1
Okt k+L=2n k+2=2n+1 k+%=2n k+L=2n+]l
hoo h=2n h=2n+1 h=2n+l h=2n
hot h+L=2n h+L=2n+1 h+1=2n+1 h+g=2n
Pomn - my + gg: }  No Cond. - No Cond. -
0k0 k=2n k=2n+1 k=2n+1 k=2n
hoo h=2n - h=2n+l -
hko h+ka2n h+k=2n+1 h+k=2n+1 h+k=2n
Py £ gzi }  No Cond. - - No Cond.
0k0 k=2n - - k=2n+1
hoo he2n h=2n+1 h=2n h=2n+1
hko h+k=2n h+ka2n+l h+k=2n h+k=2n+1
Pnma  m, c 002 4=2n 1=2n+1 4=2n+l 1=2n
. Y 0k0 k=2n - he2n -
ooy he2n h=2n+1 he2n he2n+l
Okt k+t=2n k+t=2n+l k+t=2n+1 k+L=2n
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B. The four (n=4) fold positions allow one ferro-
magnetic and three antiferromagnetic configurations:

F=S;+S,+S;+S,
G=S,-S,+8;-5, (6)
A=S,-S,—S;+S,
C=S;+8,~S;-S,.

C. The eight (n=8) fold positions allow one ferro-
magnetic and seven antiferromagnetic configurations:

F* =S;+S,+S;+S4+Ss+S¢+S,+Ss
Gt=8,—S,+S;—S,+S;—S¢+S;—Ss

At =8,—-S,—S;+S,+S;—S¢—S;+Ss
C*=S;+8S,—S;—S,+Ss+Ss—S;—S; @)
F~=8,+S,+S;+S,—S5—S—S;—S;

G =S,—S,+8;—S,—S;+S,—S,;+S;

A™ =8,—-S,—S;+S;—S5+S¢+S;—S;

C™ =S,+S,—S;—S,—S;—S;+S;+8S5 .

As already mentioned, the components of a configura-
tion (say Gy, G,, and G, of G) represent three possible
magnetic modes. The magnetic symmetries of the
magnetic modes are summarized in Table 4. For ex-
ample, consider a crystal of the space group Pbcn (D%}
having magnetic ions at the 4(c) positions, the point
symmetry of which is 2, (International Tables for X-ray
Crystallography, 1969). In using Table 4, we therefore
set « — y, f— z, y — x, and it follows that the mode
C, belongs to Pbcn, the modes C, and F, belong to
Pbc'n’, and so on.

Example

The compound KFeCl; is orthorhombic with Pnma as
a space group at room temperature (Gurewitz, Makov-
sky &;Shaked, 1972). The magnetic Fe?* ions are
located at the 4(c) positions (point symmetry: m,).
This compound undergoes a para to antiferromagnetic
transition at about 15°K. Neutron diffraction patterns
of a polycrystalline sample at 4:2 and 300°K are shown
in Fig. 1. Magnetic contributions [Fig. 1(a)] to the re-
flexions: {001}, {100}, {101}, {102}, {003}, {201},
{110}, {300} and {310} are observed. According to
Table 5, the reflexions {00/} with /=2n+1 and {h00}
with A=2n-+1 are allowed only in the C configuration.
Furthermore, these reflexions exclude (because of g?)
structures with M|z or M|x. We can, therefore, con-
clude that the only axial structure consistent with the
neutron data (Fig. 1) is C with M||y, or C,.* In order
to determine the magnetic space group, we note that
the point symmetry is m,; therefore we set in Table 4

* It still remains to be shown that the integrated intensities
calculated for_Cy are in agreement with the observed ones.
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the correspondence m, <> m,, namely o <> y. Hence,
C, appears in the first line (under m,), and the magnetic
group according to which C, (C,) transforms is (Table 4)
Pnma (mmgm,).
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Properties of Crystal Lattices: The Derivative Lattices and their Determination
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Derivative lattices are classified as super, sub and composite, on the basis of the properties of the trans-
formation matrices relating them to the lattice from which they are derived. A method for obtaining
the transformation matrices generating these lattices is given. The method has been applied to the deriv-
ation of the unique super and sublattices in a few important cases.

The super and sublattices associated with the lattice of
a crystal are not infrequently related to important
properties of the crystal. For example, in the case of
twinning by reticular merohedry, twinning takes place
only if a superlattice possesses symmetry (or pseudo-
symmetry) higher than that of the crystal lattice
(Friedel, 1964; Donnay, Donnay & Kullerud, 1958).
The concepts of super and sublattices are also essential
in the study of some derivative structures (Buerger,
1946, 1954). In an order—disorder transformation, for
example, the ordered phase is characterized by a cell
larger than that of the disordered phase and, similarly,
the cell on which a magnetic structure is based is often
larger than that of the corresponding chemical struc-
ture. So far, no attempt has been made to determine
systematically the number and the geometrical proper-
ties of super and sublattices associated with a given
lattice, and the treatment of this subject has been
generally restricted to specific cases of interest. In this
paper, we define derivative lattices and then outline a
method for their derivation.

Let us consider any given lattice and let us describe
it in terms of any arbitrary primitive triplet of non-
coplanar translations a; (a triplet is called primitive
when it defines a primitive cell: International Tables for
X-ray Crystallography, 1969, p. 8). Let us now perform
the axial transformation

b,=2,8,3; (i, j=1,2,3) M

and let us assume that the determinant |S| of the trans-
formation matrix S is different from zero. The three
noncoplanar translations b; can be regarded as the

edges of a primitive cell defining a new lattice related
to the one based on the translations a; by transforma-
tion (1). We may call original lattice the lattice based
on the triplet of translations a, and derivative lattice
the lattice defined by the triplet of translations b,
provided that this triplet is considered primitive.
Original and derivative lattices are in general different,
i.e. they have different reduced cells (Niggli, 1928;
International Tables for X-ray Crystallography, 1969,
p- 530). However, if the elements S;; are integers, and
if the determinant |S| is equal to unity, the two lattices
are identical.

The derivative lattices of interest in crystallography
are those that are obtained when the elements S;; in
transformation (1) are simple rational numbers. These
lattices can be defined in terms of the properties of the
transformation matrix S as follows.

Definition 1. A derivative lattice is a superlattice,* if
the elements S;; of matrix S are integers, and if the
determinant |S] is greater than one. Thus, all the nodes
of the superlattice are nodes of the original lattice, but
not all nodes of the original lattice are nodes of the
superlattice.

Definition 2. Let T be the inverse of matrix S, i.e.
T=8"1 A derivative lattice is a sublattice, if the ele-
ments T;; of matrix T are integers, and if the deter-
minant |T| is greater than one. Thus all the nodes of

* In some publications, especially in the mathematical
literature (e.g. Cassels, 1959), a ‘superlattice’ as defined in this
paper is called a sublattice because it is generated by a subgroup
of the translations on which the original lattice is based.



